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Synopsis 

It has been shown that the parameters in the log-normal (LN) and generalized exponential (Gex) 
distributions can be evaluated if molecular weight ratiosH and H,, or their equivalents, are known 
for a linear, unimodal homopolymer. It is suggested that better checks of observed and calculated 
values of M, can be obtained for such polymers as are characterized by m 5 0.15, by treating them 
as Gex rather than LN distributions. 

INTRODUCTION 

The continuum of molecular weight distributions (MWDs) proposed in ref- 
erence 1 is of use to assign specific statistical distribution functions to whole, 
unimodal homopolymer samples for which average molecular weights M,, M,, 
and M,, or corresponding A,, Aw, and A, values from GPC, are available. 
Consistent data for M,, Mu, and M, upon such samples also suit the purpose. 
As indicated in reference 1, the assignment of MWD consists of two elements: 
a value of MJM, for the polymer plus a statement of its position in the con- 
tinuum, denoted either by stating that it follows the log-normal (LN) distribution 
or by giving its m value if it follows a generalized exponential (Gex) distribution. 
As shown below, such an assignment of MWD to a polymer sample eliminates 
the need to assume anything about the distribution function that characterizes 
it. Boyer2 stated that such assumptions were needed to describe polymer MWD 
curves when only Mm/Mn, etc., data were avaliable. 

FORMULAS FOR EVALUATING COEFFICIENTS OF 
DISTRIBUTION FUNCTIONS 

Since the LN distribution is the broadest in the continuum of Gloor,l and all 
narrower distributions in it follow a Gex distribution, detailed formulas for 
evaluating coefficients are given here only for them. 

Formulas for LN Distributions 

A two-parameter function, the LN frequency distribution, is given by Chiang3 
as 

who also shows the following relations for polymer average molecular weights: 

M, = M,,, exp(-B2/4) ( 2 4  
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Mw = M ,  exp(B2/4) 

M,  = Mm exp(3B2/4) 

Mz+l = Mm exp(5B2/4) 
where M ,  is the median molecular weight of the polymer sample and B is related 
to the standard deviation of In M .  

If exponent a in an applicable Mark-Houwink equation for the polymer sample 
is known, the viscosity-average molecular weight Mu is defined as 

From these relations the following ratios of various average molecular weights 
in LN distributions follow: 

Mu = M ,  exp(aB2/4) ( 2 4  

Thus, by knowing test values for Mw and Mn, the parameters M ,  and B can be 
evaluated by solving eqs. (2a) and (2b) simultaneously. As a check, these pa- 
rameters should be substituted into eqs. (2c) or (2e) to verify their accord with 
the data before acceptance as valid coefficients in eq. (1). 

Formulas for Gex Distributions 

For the Gex distribution, Peebles4 shows frequency and weight distribution 

f(r)  = myk/mrk-l [exp(-yrm)l/r (klm) ( 4 4  

W(r) = my(k+l)/mrk[exp(-yrm)]/r[(k + l)/m] (4b) 
where r is the degree of polymerization (D.P.) of the polymer. In this three- 
parameter equation, y is specific to the polymer, k is related to the distribution 
width, and m is the location parameter in the continuum. The Gex distribution 
embraces several distributions commonly known under other names: those in 
which the m value is 1 (unity) are the Schulz-Zimm (S-Z) where k > 0; the “most 
probable” where k = 1; the Schulz, where k > 1; and the Poisson, where k >> 1. 
When m = k + 1, the Gex distribution becomes the Tung-Weibull (T-W) dis- 
tribution. 

Peebles denotes average D.P. values as Fn for number-average distribution, 
F; for weight-average distribution, etc. For these average D.P. values he 
shows 

F~ = r[(k + l)/m]/yl/mr[k/rn] ( 5 4  
r;, = r[(k + 2)/m]/yl/mr[(k + l)/m] (5b) 
F, = r[(k + 3)/m]/yl/mr[(k + 2)/m] (5c) 

F , + ~  = r[(k + 4)/m]/yl/mr[(k + 3)/m] ( 5 4  
For these Gex distributions, when exponent a of the applicable Mark-Houwink 
equation is known, 

relations as 
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When the unit weight of monomer in the homopolymer under study is Mo, FnMo 
= M n ;  F,Mo = M,; FuMo = Mu, etc., and the ratio F w / F n  = M,/M,, Tw/Fu = 
M,/Mu, etc., and the theoretical values of the ratios of molecular weights are 
determined in terms of k and m as shown in Table 1 of reference 1. 

As noted in the introduction, when M J M ,  and m are known, the MWD is 
defined. For Gex distributions, one also needs a value of k to evaluate eqs. 
(5a)-(5e). The relationships of these three factors are given in Figure 1, which 
is an elaboration of Table 2 of reference 1 and was prepared in the same way. 
Figure 1 not only facilitates computation but also enables one to demonstrate 
the validity of these relations by comparison with the literature. 

For instance, Sibfnski5 gives for the Schulz distribution values of k for values 
of U between 0.1 and 1.0 (since U + 1 = M,/M,, this is plotted at  1.1-2 along 
that axis in Fig. 1) in exact accord with Figure 1. He also shows for the T-W 
distribution6 comparisons of b (in our notation, b = m = k + 1 for this distribu- 
tion) with values of U from 0.99 to 4.88 that check the T-W curve of Figure 1. 
For relationships involving Mu, values of M J M ,  for the LN and S-Z distribu- 
tions, where exponent a in the Mark-Houwink equation is 0.5, are given by Elias, 
Bareiss, and Watterson7 for M,IM, ratios of 1.5-10. Using the theoretical 
formulas of Table I of reference 1 and estimating k values from Figure 1, one 
obtains values of (MwIMu)-l  in good agreement with their values. Further, 
Mark-Houwink-type equations for M,, Mu, and M,, with exponents a = 0.75 
and 0.72, proposed for polyacrylonitrile8 and for polyamidesg give M,IM, of 2 
and M,/Mu of 1.06. From Figure 2 of reference 1, these indicate m = 1; and from 
Figure 1, k = 1, in agreement with the “most probable” distribution attributed 
to these polymers. Thus, the relationships of Figure 1 agree with the pertinent 
literature. 

Hence, knowing M,IM, and m for a polymer, one finds the corresponding 
value of k in Figure 1 and solves eqs. (5a) and (5b) for y, to show that they give 
similar values. The theoretical value of M,  can then be checked using eq. (5c). 
Equations (4a) and (4b) can then be set up using the numerical values of k ,  rn, 
and y to give an analytical expression for the Gex distribution functions of the 
polymer sample. 

Notation for Molecular Weight Ratios 
As shown in reference 1 for all ratios in the continuum, the symbols H = 

Mw/Mn and H, = M,/M, may be found to be convenient. To be readily dis- 
tinguished, the ratio M,/M, is retained. For LN distributions, H = H,, while 
for all Gex distributions, H > H,. For all distributions in the continuum, H, 
X H = M,/M,. 

TEST OF ASSIGNMENTS OF COEFFICIENTS USING 
LITERATURE DATA 

The National Bureau of Standards standard sample no. 1475, a linear poly- 
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ethylene (HDPE), was reported to be unimodal and to be CharacterizedlO as 
follows: 

Molecular weights: By GPC By light scattering 

Number-average M ,  18,310 (f360) - 

z-Average M ,  138,000 (f3,700) - 
Weight-average M ,  53,070 (f620) 52,000 (4~2,000) 

Standard deviations are shown in parentheses. From the average data, H = 
2.90 and H,  = 2.60. At  once, it appears that this sample does not follow the LN 
distribution exactly. A trial LN calculation indicated that coefficient B = 1.459, 
M ,  = 31,173, and log M ,  = 4.494. Interpolated, the cumulative distribution 
curvelo for this sample showed the mean log M to have a value of 4.47, not a bad 
check. However, M,  calculated for this sample using these coefficients in eq. 
(2c) gave M ,  = 153,800, outside the standard deviation limits. 

The value of H, X H = 7.54 = MJM, for this sample of H = 2.9 indicates, from 
Figure 1 of reference 1, that a Gex distribution where m = 0.1 would fit the data. 
From Figure 1, such a polymer would have, in theory, k = 8.4. For HDPE, Mo 
= 28. Hence, for this sample, F, = 653.93 and F, = 1895.36. From eq. (5a), 

653.93 = r94/[(~1o)(r84)] = 93!/[(~10)(~3!)] 
y = 46.255 

From eq. (5b), 
1895.36 = 103!/[(ylo)(93!)] 

y = 46.289 

The two values for y check, average y = 46.27. From eq. (5c), 

F, = 113!/[(46.271°) X (103!)] = 5015.1 

M,  = 5015.1 X 28 = 140,400 

well within the standard deviation limits of 134,300-141,700 for M, by GPC. If 
k is taken as 8.5, y becomes 46.769 and the calculation gives theoretical M,  = 
138,100. 

If one takes the conservative view that M ,  by light scattering is the only really 
absolute measurement and that the purpose of GPC is to give M,:M,:M, or H 
and H, ratios, the standard deviation in M, ranges from 130,000 to 140,400. The 
M ,  calculated from theory for a Gex distribution where m = 0.10 is also in accord 
with this range. 

Hence, the coefficients for eqs. (4a) and (4b) for standard HDPE sample no. 
1475 are: m = 0.10, k = 8.4, and y = 46.27. Since a plot of log M of its fractions 
on probability paper seems linear, it ostensibly follows the LN distribution. 
However, the Gex distribution with m = 0.10 provides a better fi t  of M, re- 
ported. 

Two other samples of HDBE, those of lowest and highest H values in the series 
reported by Stacy and Arnett," further exemplify this point. Reported data, 
coefficients for their Gex equations, and comparisons of their M,  from LN and 
Gex distributions are: 

Sample 2. Reported H, = 9, H = 10.1, and M ,  = 82,000; hence, M,  = 738,000. 
Coefficients: m = 0.02, k (by trial) = 20.64, and y = 944.04. M,  for LN distri- 
bution: 828,200. M, from Gex from m, k, and y coefficients: 745,160. 
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Sample 10. Reported H, = 8, H = 15.7, and M,  = 122,000; hence, M, = 
976,000. Coefficients: m = 0.105 (from Fig. 1 of ref. l), k = 2.6 (from Fig. 1 of 
ref. l), and y = 15.97. M,  for LN distribution: 1,915,400. M, from Gex from 
m, k ,  and y coefficients: 991,000. Similar agreement between Gex-based cal- 
culations of M ,  and data values can be shown for other samples in this series. 

It is suggested that instances in the literature where polymers are reported 
to fit the LN distribution but where discrepancies were reported between ob- 
served and calculated values of M,, as noted by Chiang,3 may have been cases 
where a Gex distribution with m I 0.15 would provide better agreement. As 
indicated above, cumulative distribution curves are insufficiently sensitive to 
reflect such differences. 

In the continuum of Gloor,l the LN distribution is its upper limit, and it is to 
be expected that real polymers will deviate from it slightly. Although calcula- 
tions based upon LN are simple, they fail when applied to estimations of M, for 
polymers characterized by such small deviations. 
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